Veneer Stability Calculations

MSW, Mixed & Hazardous Waste Landfills Superfund Sites (... that used to be Landfills) Heap Leach Pads and Tailings Impoundments Earthfill Dams April 13, 2021

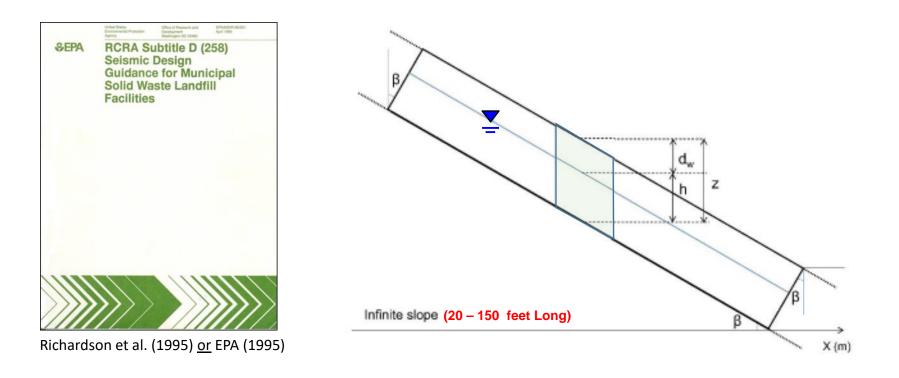
Neven Matasovic

Geo-Logic Associates, Costa Mesa, California nmatasovic@geo-logic.com; Direct:714.465.8240

OUTLINE

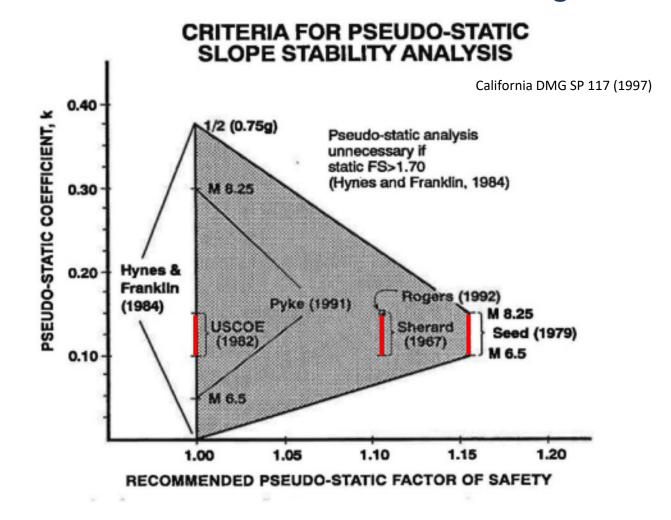
- 1. Introduction
- 2. "Simplified" Analyses
- 3. Case Study (Composite Cover)
- 4. Special Cases
- 5. Advanced Analysis
- 6. Take-Aways ... and spreadsheets and papers to download

State-of-the-Practice


State-of-the-Art

INTRODUCTION

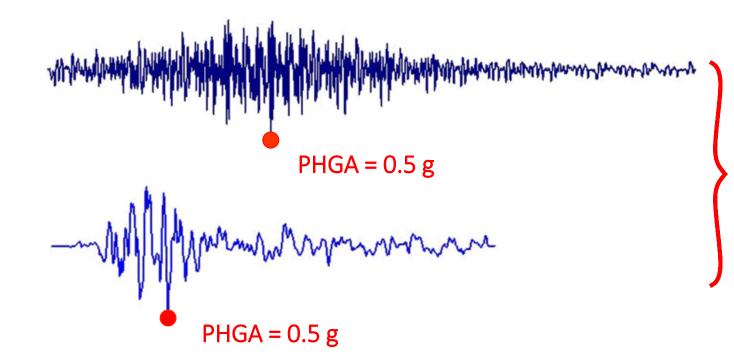
VENEER STABILITY ≈ INFINITE SLOPE (?)



$$FS = \frac{\frac{c}{\gamma z \cos^2 \beta} + \tan \phi \left[1 - \frac{\gamma_w (z - d_w)}{\gamma z}\right] - k_s \tan \beta \tan \phi}{k_s + \tan \beta}$$
_{Matasovic (1991)}

k_s = Seismic coefficient (dimensionless constant; H = k_s x W)

EVALUATION OF k_s



California Title 27 requires "Dynamic FS ≥ 1.5" (... but offers no further guidance)

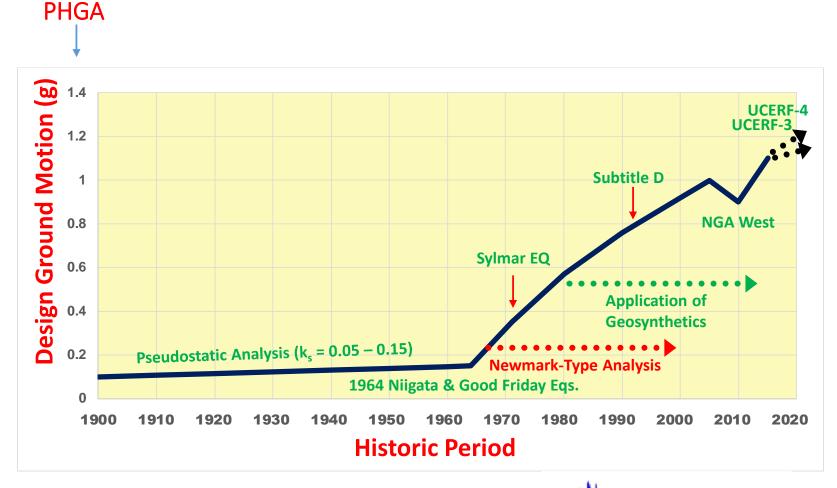
© Matasovic 2021

FGI Fabricate

SEISMIC COEFFICIENT (k_s)

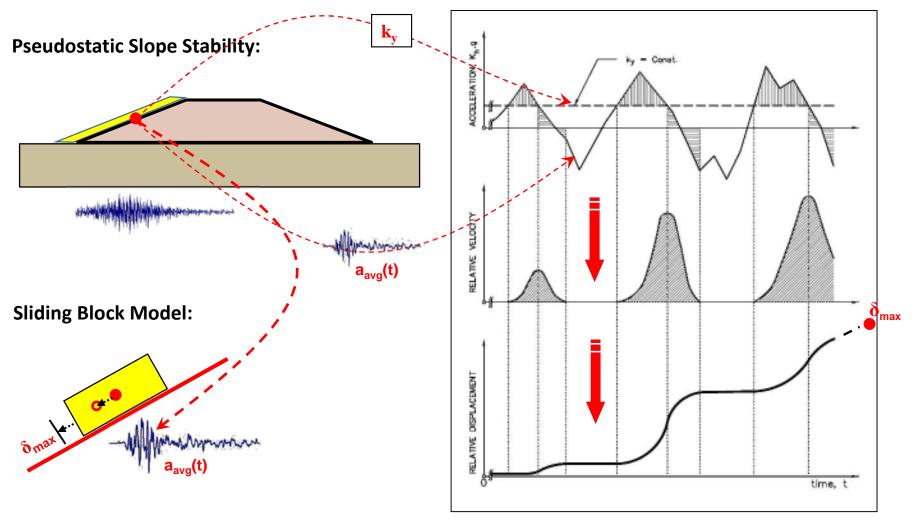
Seismic Loading

Can one evaluate k_s from PHGA? Is damage potential induced by these two motions the same?



SEISMIC COEFFICIENT (CONT.)

Conceptual Trend of Ever-increasing Design Ground Motion


NEWMARK-TYPE ANALYSIS (Sliding Block Analysis)

- FS = 1.0 does not necessarily mean a failure! It means "block starts to move ..."
- Performance-Based Design The intensity of calculated displacement controls the design

NEWMARK-TYPE ANALYSIS (CONT.)

After Newmark (1965)

NEWMARK-TYPE ANALYSIS (Simplified Approach / "Spreadsheet")

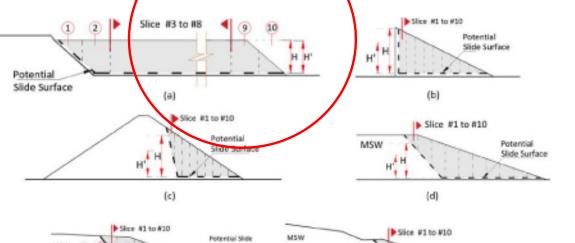
Input ("Simplified" Analyses Only):

- **1.** Yield acceleration of sliding mass (k_y) (accel. for FS = 1.0)
- 2. Initial Fundamental period of sliding mass (T_s)
- 3. (Design) ground motion (M, S_a, and PGV, ...)

Output:

Maximum calculated permanent seismic displacement (δ_{max})

Note: M = Moment Magnitude; S_a = Spectral acceleration at the base of the sliding mass ...; PGV = Peak Ground Velocity at the base of the sliding mass ...



INP. 1. YIELD ACCELERATION (k_v) Office of Research and Development EPARION BLOCK United States Environmental Protection Amount SEPA RCRA Subtitle D (258) Seismic Design Guidance for Municipal Solid Waste Landfill Facilities ----dw z Infinite slope (20 - 150 feet Long) Richardson et al. (1995) or EPA (1995) X (m)

$$\boldsymbol{k_{y}} = \frac{\frac{c}{\gamma \ z \ \cos^{2} \beta} + \tan \phi \left[1 - \frac{\gamma_{w} \ (z - d_{w})}{\gamma \ z}\right] - \tan \beta}{1 + \tan \beta \tan \phi}$$
_{Matasovic (1991)}

INP. 2. INITIAL FUNDAMENTAL PERIOD

Bray and Macedo (2021) Matasovic and Thiel (2021)

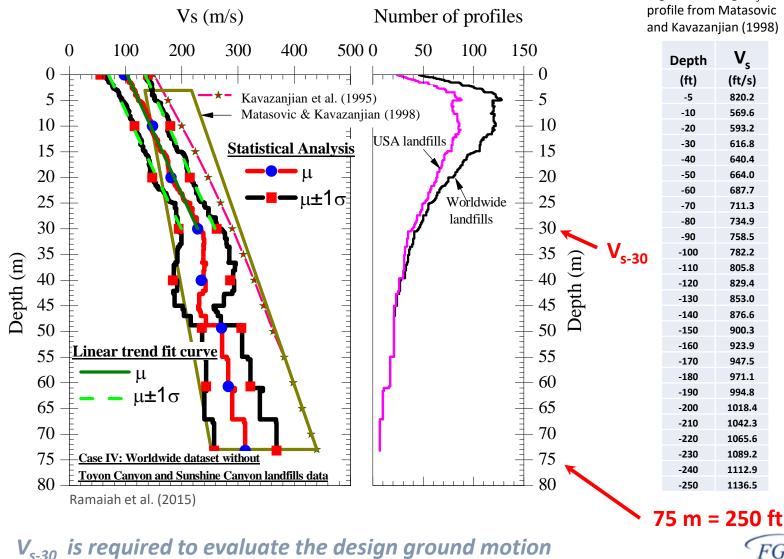
$T_s = 4 H'/V_s$

 T_s = initial fundamental period of the potential sliding mass H' = the effective height of an equivalent one-dimensional sliding mass V_s = (average) shear wave velocity

INP. 3. DESIGN GROUND MOTION

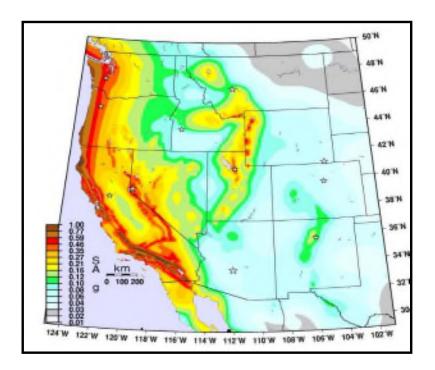
Input: ("Simplified" Analyses Only; USGS web page):

- A. Latitude and Longitude & "Applicable Code"
- **B.** V_{s-30} (NEHRP Site Class)


Output:

- M, S_a (PHGA), and PGV, ...
- Other

Note: For landfill cover, Spectral Acceleration Ordinate, $S_a \approx PHGA$ at the landfill surface


INP. **B. SHEAR WAVE VELOCITY PROFILE**

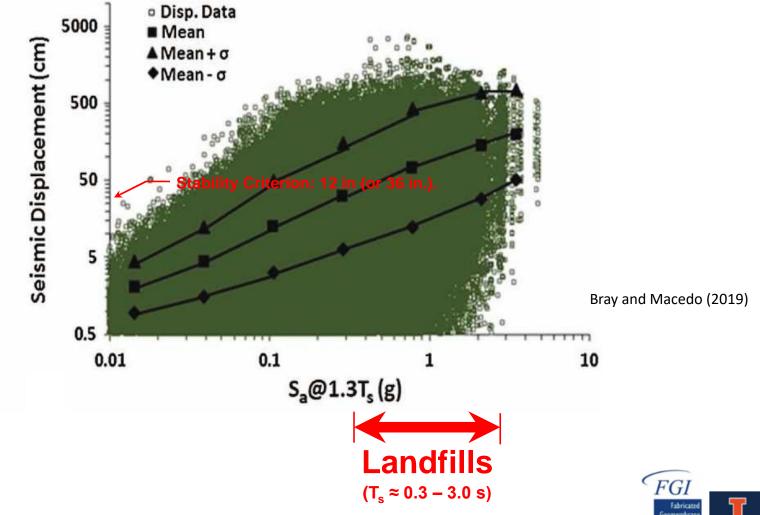
© Matasovic 2021

Digitized average V_s

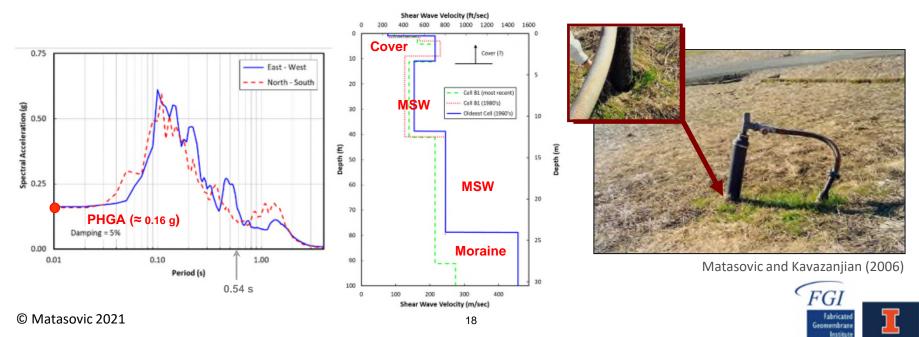
NOTE ON DESIGN GROUND MOTION

California mandates deterministic seismic hazard analysis (MPE & MCE); Everybody else mandates probabilistic (2% PE in 50 years or 2,475-yr RP)*

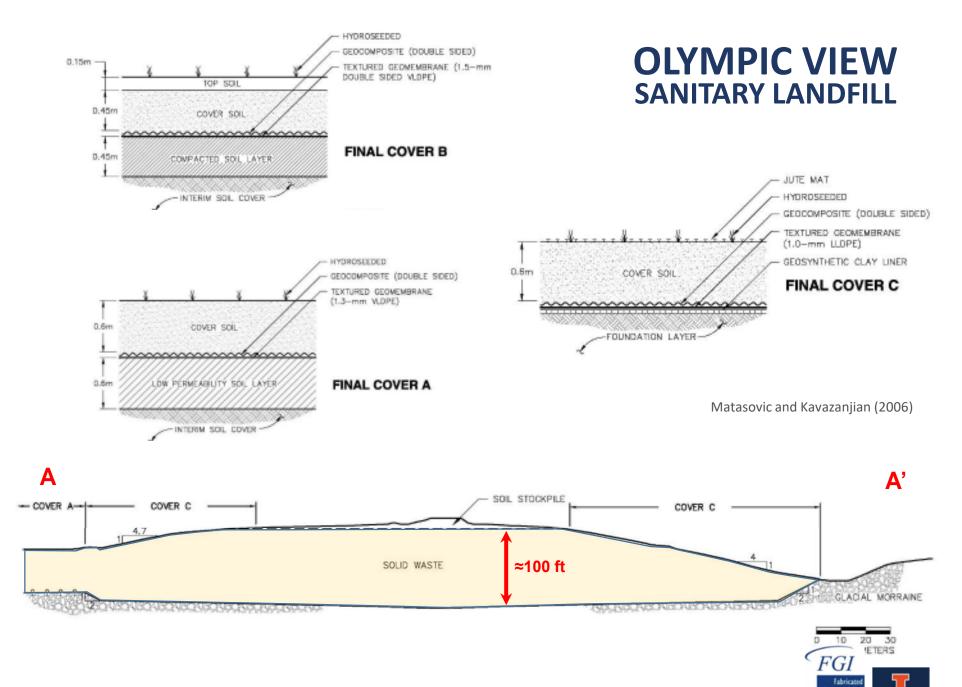
Building code allows for a 2/3 Reduction of design ground motion; US Subtitles D & C do not. So, buildings in US are designed for approx. 500-yr RP, while landfills outside of CA are designed for a 2,475-yr RP


RP = Return Period PE = Probability of Exceedance MPE = Maximum Probable Earthquake MCE = Maximum Credible Earthquake 2,475-yr RP motion is typically much higher than its deterministic (MPE and MCE) counterparts

Site specific analysis is required to obtain PGV


STATE OF PRACTICE* – BRAY & TRAVASAROU

(Latest Update: Bray and Macedo, 2019; 2021)


OLYMPIC VIEW SANITARY LANDFILL (Composite Landfill Cover <u>Seismic</u> Case History)

- MSW Landfill in WA; Founded in Moraine (Weak Rock)
- 2001 M 6.8 Nisqually Eq.
 - SM: Recorded in Moraine ≈ 1 km from the Site
 - Weak Rock PHGA ≈ 0.16 g
 - Site-Specific Measurements (V_s and in-plane strength)
 - Post-EQ Observation: δ_{max} = 0 (no cracks in cover observed)

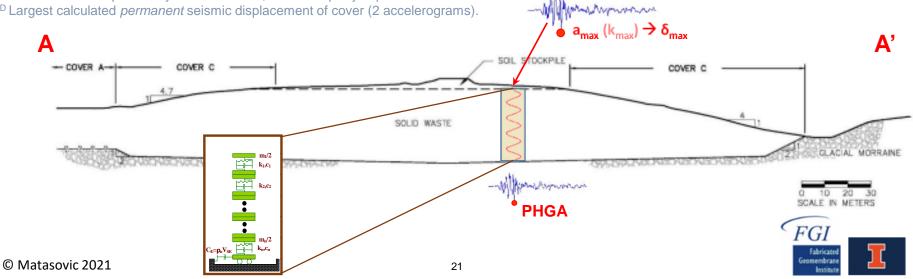
OLYMPIC VIEW SANITARY LANDFILL – AERIAL VIEW IN 2001

SITE RESPONSE & SEISMIC DEFORMATION ANALYSIS

Method	Bedrock PHGA (Input)	a _{max}	k _{max}	δ _{max} (k _y = 0.17 g)	δ _{max} (k _y = 0.22 g)
1 EPA (1995) / H & F Charts	0.16 g	0.47 g	0.47 g	100 mm ^a	< 100 mm ^A
2 EPA (1995) / M & S Charts	0.16 g	0.47 g	0.47 g	100 - 230 mm ^B	50 - 130 mm ^B
3 Bray et al. (1998)	0.16 g	0.28 – 0.34 g	0.28 - 0.34 g	30–130 mm ^c	6 – 40 mm ^c
4 De-Coupled Analysis (D-MOD2000)	0.15 g (NS); 0.16 g (EW)	0.18 - 0.19 g	0.18 - 0.19 g	< 1 mm ^D	0

H & F = Hynes and Franklin (1984).

M & S = Makdisi and Seed (1978).

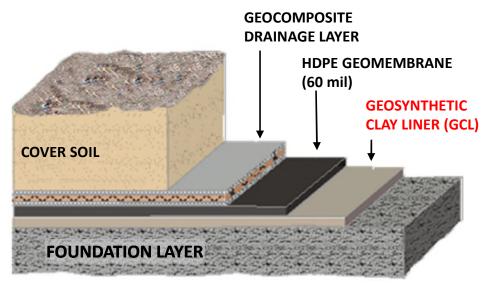

^AMean plus one standard deviation curve.

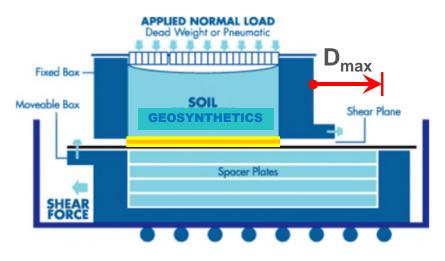
^B Mean and upper bound for the **M** 6.5 chart.

^C Median and 16% probability of exceedance; **M** 6.8 Nisqually Eq..

^D Largest calculated *permanent* seismic displacement of cover (2 accelerograms).

STATE-OF-PRACTICE - DISCUSSION

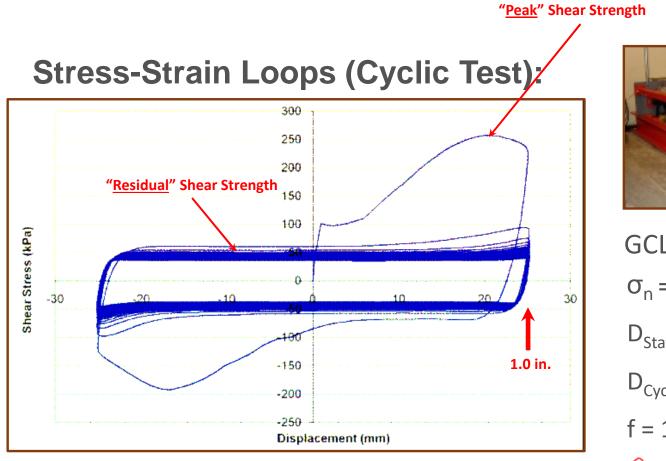

- Is SOP Conservative (?)
- Is SOP Economical (?)
- Limitations of the SOP?
 - Very High Design Ground Motions
 - Complex Geometry
 - Thick Fills (350⁺ ft or 100⁺ m)
- Perf.-Based Stability Criteria (12 36 in.)
- Other ...



ET Cover

Composite Cover

LAB MEASUREMENT OF IN-PLANE STRENGTH



Conventional Shear Box:

- Box: 305×305 mm (12×12 in.)
- $D_{max} = 90 \text{ mm} (3.5 \text{ in.})$
- 1 mm/min (0.04 in./min) or
- 0.1 mm/min (0.004 in./min) GCL internal
- Static Only!

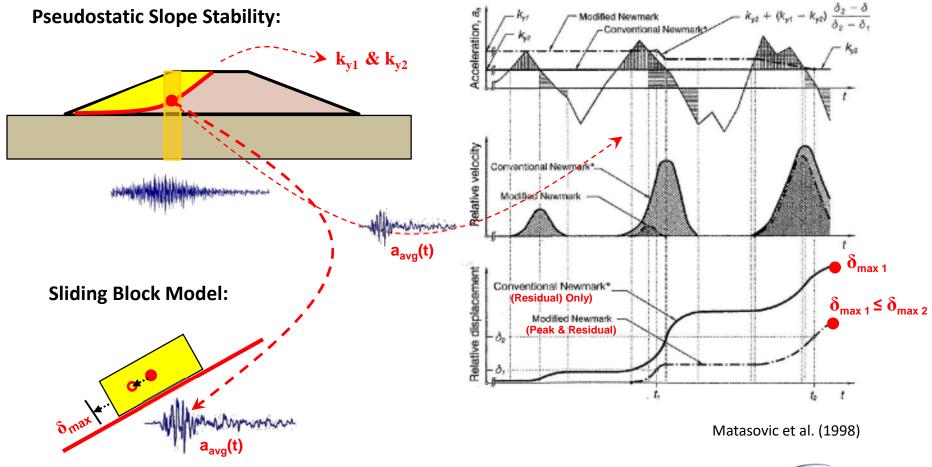
LAB MEASUREMENT OF IN-PLANE STRENGTH

Nye and Fox (2007)

GCL (Bentomat ST)

 $\sigma_n = 141 \text{ kPa} \text{ (30 ft of MSW)}$

D_{Static} = 0.9 m (36 in.


 $D_{Cyclic} = \pm 25 \text{ mm} (\pm 1 \text{ in.})$

f = 1 Hz

MODIFIED NEWMARK-TYPE ANALYSIS (Newmark-Type analysis w/ Degrading Yield Acceleration)

COMPLEX GEOMETRY / THICK FILL ... Old Landfill

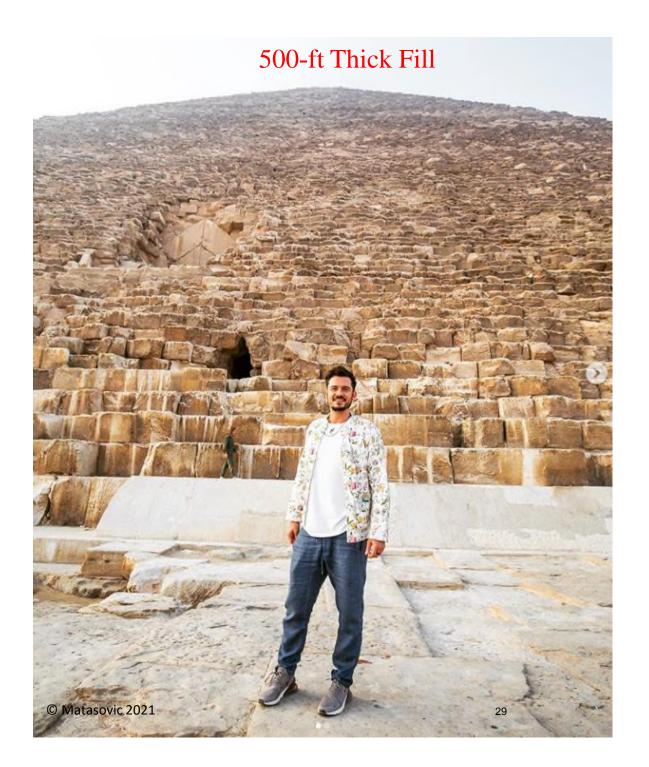
(Unlined)

© Matasovic 2021

Recent Expansion

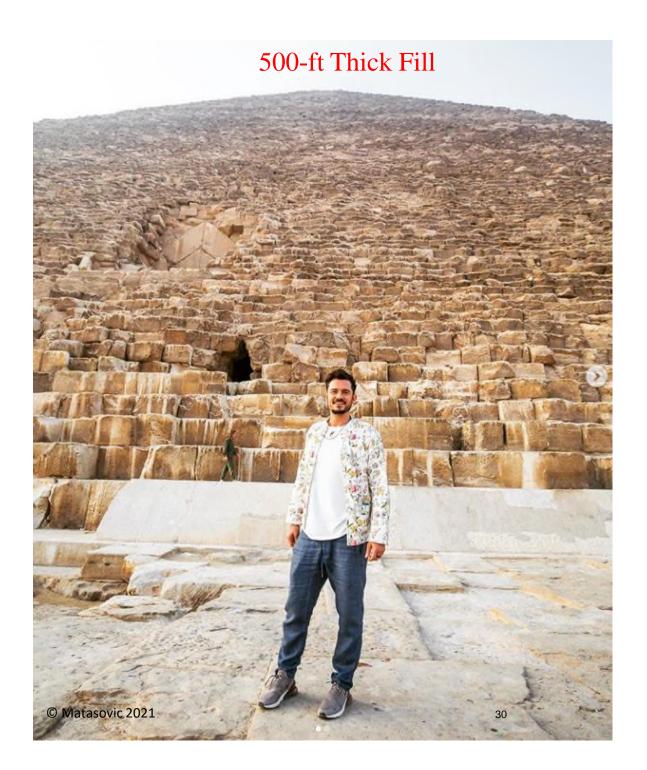
(Lined)

COMPLEX GEOMETRY / THICK FILL ...



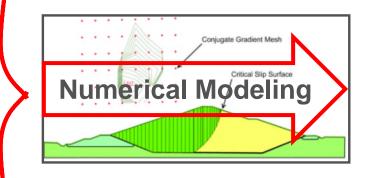
COMPLEX GEOMETRY / THICK FILL ...

28

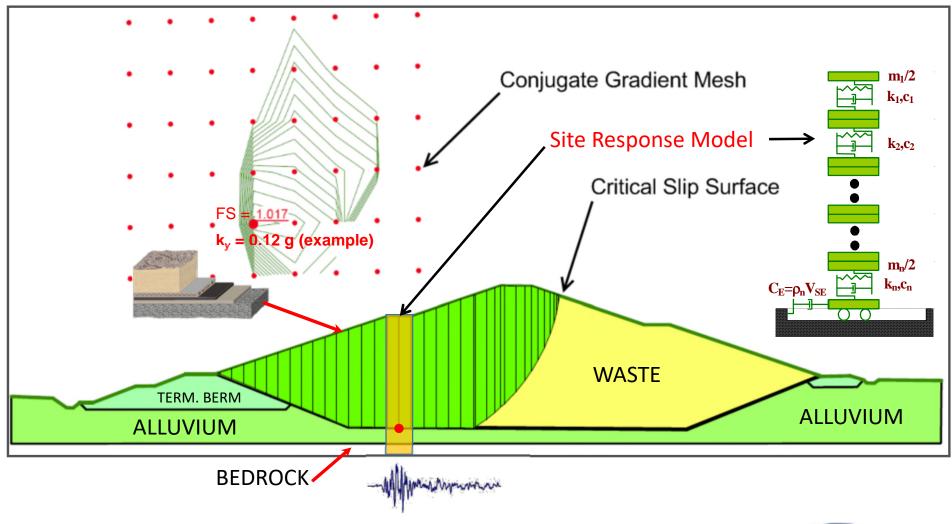


500⁺ ft Thick Fills

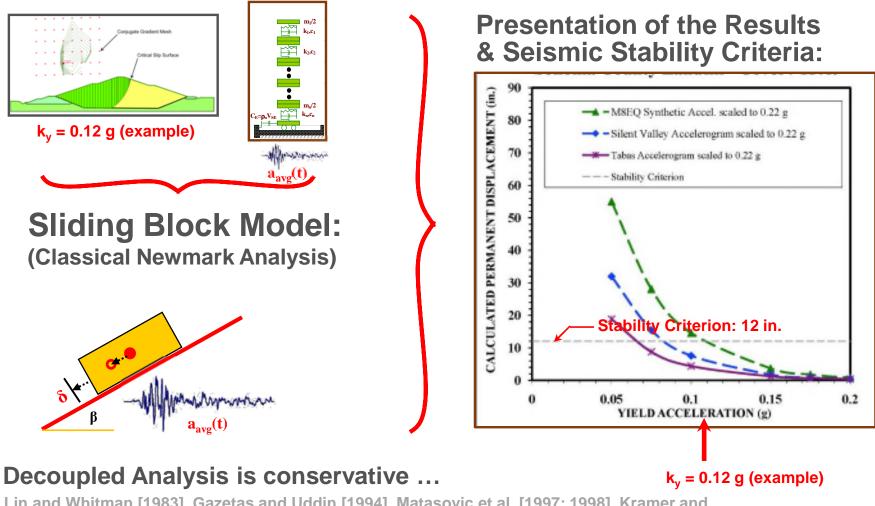
Landfills <u>do not</u> respond to strong shaking like this structure (even though ...)



Landfills respond to strong shaking like these structures ... were not designed using charts ...

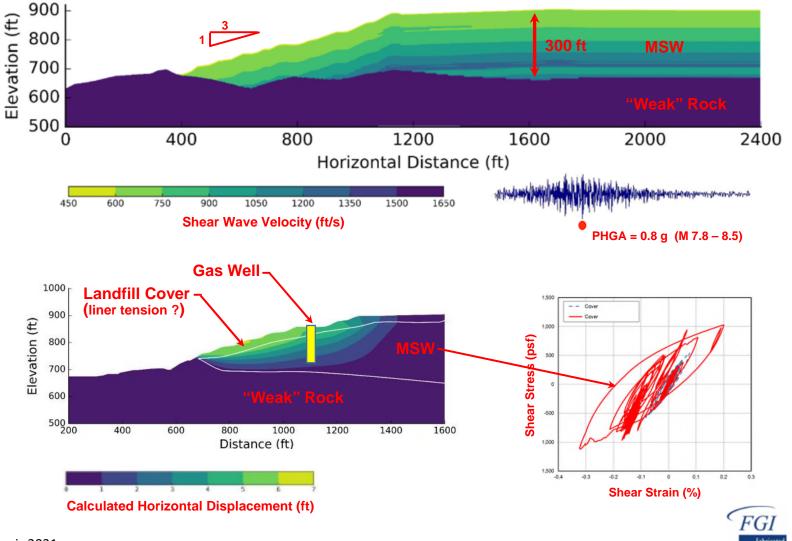

CAN WE DO "BETTER" THAN SOP?

- 1. Des. Ground Motions
- **2. Properties of MSW**
 - Static
 - Dynamic
- **3. In-Plane Properties**
 - Static (incl. creep)
 - Dynamic
- 4. Other (Bedrock Prop., ...)



STATE OF PRACTICE - DECOUPLED ANALYSIS

STATE OF PRACTICE - DECOUPLED ANALYSIS


Lin and Whitman [1983], Gazetas and Uddin [1994], Matasovic et al. [1997; 1998], Kramer and Smith [1997], Rathje and Bray [1999], Wartman et al. [2003; 2005], ...

© Matasovic 2021

FGI

FLAC 8.0	Verification Problems	ITASCA Connerg Direct In
FLAC 8.0	User's Guide	ITASCA Locality Grap. Inc
FLAC 8.0	Constitutive Models	TASCA Constant Times Jac
FLAC 8.0	Example Applications	TEASCA Constructions Int
FLAC 8.0	Structural Elements	ITASCA Consisting Line
FLAC 8.0	Fluid-Mechanical Interaction	
FLAC 8.0	FLAC/Slope User's Guide	TTASCA Committing Bring Base
FLAC 8.0	Factor of Safety	ITASCA Dave Aling Group for
FLAC 8.0	EPA (1995) Command Reference	TASCA Describing Timps for
FLAC 8.0	FISH in FLAC	TTASCA
FLAC 8.0	Theory and Background	TASCA
FLAC 8.0	Dynamic Analysis	TTASCA Canadiage Unage San
FLAC 8.0	Creep Material Models	TASCA
FLAC 8.0	Thermal Analysis	ITASCA Consisting Drop In.
© Matasovic 2021	34	FGI Fabricated Geomembrane Institute

ADVANCED ANALYSIS (Hazardous Waste Landfill in CA – Cover Design)

TAKE-AWAYS

- Don't get deceived w/ the "infinite slope" equation - Composite landfill cover slope length should not exceed 150 ft.
- Landfill cover gas drainage layer: should be constructed from coarse sand (Coarse sand prevents capillary suction which, in turn, prevents gas migration).
- There are generic sets of material parameters of MSW and interfaces, but design ground motions and interface strength must be evaluated on a site-by-site basis, ...

TAKE-AWAYS (CONT. 1)

- Always start with "<u>simple</u>" analysis first ...
- Pseudostatic method with k_s is O.K. when cover PGA ≤ 0.2 g; Performance-based design (Newmark-type analysis) should be used for PHGA ≥ 0.2 g.
- State-of-the-Practice (seismic) is generally conservative, ... ("cumulative" FS may be high!)
- Advanced analysis is less conservative, it is suitable for high ground motions, "thick fills," complex geometry ...

TAKE-AWAYS (CONT. 2)

- Nonlinear and/or 2-D site response analysis is recommended when bedrock PHGA ≥ 0.4 g. "Model calibration" may be required.
- The only proper way to check the results of advanced seismic stability analysis is to repeat it (for critical section ...).
- Stability criteria ever-evolving (12 ET; 36 in. composite; ... consider release/no release of contaminants; ease of cover repair ...).
- Remember video shown at the beginning of this presentation?

SELECT REFERENCES (posted @ www.geomotions.com)

- Bray, J.D. and Travasarou, T. (2007), "Simplified Procedure for Estimating Earthquake-Induced Deviatoric Slope Displacements," ASCE Journal of Geotechnical and Geoenvironmental Engineering, Vol 133, No. 4, pp. 381-392.
- Bray, J.D and Macedo, J. (2019), "Procedure for Estimating Shear-Induced Seismic Slope Displacement for Shallow Crustal Earthquakes," Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 145, No. 12, 13 p.
- Bray, J.D and Macedo, J. (2021), "Closure to 'Procedure for Estimating Shear-Induced Seismic Slope Displacement for Shallow Crustal Earthquakes' by J. Bray and J. Macedo," ASCE Journal of Geotechnical and Geoenvironmental Engineering, Vol. 147, No. 5.
- Thiel R.S. (1998), "Design Methodology for a Gas Pressure Relief Layer Below a Geomembrane Landfill Cover to Improve Slope Stability," Geosynthetics International, Vol. 5, No. 6, pp. 589-617.
- Kavazanjian, E., Jr., Wu, X, Arab, M. and Matasovic, N. (2018). "Development of a Numerical Model for Performance-based Design of Geosynthetic Liner Systems, *Geotextiles and Geomembranes*, Vol. 46, Issue 2, pp. 166-182.
- Kavazanjian, E., Jr., Matasovic, N. and Bachus, R.C. (2013), "11th Peck Lecture: Pre-Design Geotechnical Investigation for the OII Superfund Site Landfill," ASCE Journal of Geotechnical and Geoenvironmental Engineering, Vol. 139, No. 11, pp. 1849-1863.
- Matasovic, N. (1991). "Selection of Method for Seismic Slope Stability Analysis". Proc. 2nd International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics. St. Louis, Missouri. Vol. 2, pp. 1057-1062. INFINITE SLOPE SPREADSHEET POSTED
- Matasovic, N. and Zekkos, D. (2017), "Modulus Reduction and Damping Curves for Landfill Covers," In: Geotechnical Frontiers 2017: Seismic Performance and Liquefaction, ASCE Geotechnical Special Publication No. 281, pp. 101-108.
- Matasovic, N. and Thiel, R. (2021), "Discussion of 'Procedure for Estimating Shear-Induced Seismic Slope Displacement for Shallow Crustal Earthquakes,' by J. Bray and J. Macedo," ASCE Journal of Geotechnical and Geoenvironmental Engineering, Vol. 147, No. 5.
- Matasovic, N. and Kavazanjian, E., Jr. (2006), "Seismic Response of a Composite Landfill Cover," ASCE Journal of Geotechnical and Geoenvironmental Engineering, Vol. 132, No. 4, pp. 448-455.
- Matasovic, N. and Kavazanjian, E. Jr. (1998), "Cyclic Characterization of OII Landfill Solid Waste," ASCE Journal of Geotechnical and Geoenvironmental Engineering, Vol. 124, No. 3, pp. 197 210.
- Matasovic, N. Kavazanjian, E., Jr., and Giroud, J.P. (1998), "Newmark Seismic Deformation Analysis for Geosynthetic Covers," Geosynthetics International, IGS Journal, Vol. 5, Nos. 1 - 2, pp. 237-264.
- Ramaiah, B.J., Ramana, G.V., Kavazanjian, E. Jr., Matasovic, N. and Bansai, B.K. (2016), "Empirical Model for Shear Wave Velocity of Municipal Solid Waste in Situ," ASCE Journal of Geotechnical and Geoenvironmental Engineering, Vol. 142, No. 1.
- Richardson, G.N., Kavazanjian, E., Jr. and Matasovic, N. (1995), "RCRA Subtitle D (258) Seismic Design Guidance for Municipal Solid Waste Landfill Facilities," EPA Guidance Document 600/R 95/051, United States Environmental Protection Agency, Cincinnati, Ohio, 143 p.

QUESTIONS ?

Neven Matasovic, Ph.D., P.E., G.E.

Principal & Director of Geotechnical Engineering Geo-Logic Associates, Inc. nmatasovic@geo-logic.com

Timothy D. Stark Ph.D., P.E. Professor of Civil & Environmental Engineering University of Illinois at Urbana-Champaign Technical Director Fabricated Geomembrane Institute tstark@Illinois.edu

Jennifer Miller, M.S. Coordinator

Fabricated Geomembrane Institute University of Illinois at Urbana-Champaign fabricatedgeomembrane@gmail.com

Deep Water Leak Location Surveys: Highly Sensitive and Very Effective

Thursday, May 6, 2021 at Noon CDT

Free to Industry Professionals 1.0 PDH

> **Presenter** Matthew Kemnitz

Check out the FGI's Website

- Online PDH Program
- Audio and Video Podcasts
- Latest Specifications and Guidelines
- Installation Detail Drawings (PDF and DWG)
- Technical Papers and Journal Articles
- Webinar Library (available to view and download)
- ASTM Field and Laboratory Test Method Videos
- Pond Leakage Calculator
- Panel Weight Calculator
- Geomembrane Defect Leakage Calculator
- Installation Cost Comparison Calculator
- Photo Gallery
- Member Directory
- Material and Equipment Guides
- Industry Events Calendar
- Women in Geosynthetics

www.fabricatedgeomembrane.com